
Ernesto Bosque
National High Magnetic Field
Applied Superconductivity Center scientist.
Ernesto Bosque is a Research Faculty member at the Applied Superconductivity Center at the National High Magnetic Field Lab (ASC-NHMFL). Following a B.S. in mechanical engineering from at the Florida State University, he continued at FSU to earn a PhD under Prof. S. Van Sciver at the NHMFL, experimentally investigating heat and mass transfer phenomena subsequent a catastrophic loss of the isolation vacuum around Helium-II systems. Transitioning from cryogenics, he began his superconducting magnet work under U. Trociewitz in the HTS Coils Group, focused on driving Bi-2212 high temperature superconductor technology into magnet technology. His postdoc focused on multiphysics finite element analysis on prototype coil designs to predict their operational performance limits and comparing the models with experimental results, which served as feedback to validate and improve the modeling effort.
As Bi-2212 requires a heat treatment at high temperature and pressure, another focus became a deeper understanding of the heat treatment. He heads operation of a large, high-pressure furnace required for processing the wind-and-react Bi-2212 coils for the coil program at the ASC, as well as for collaborations with industry and the US Magnet Development Program, specifically with LBNL. Over the last few years he has also taken on a Technology Manager role for insulated REBCO efforts within the NHMFL 40T All Superconducting Magnet Project. With over a decade of his career at the lab, he has also served as the Diversity Chair of the NHMFL for several years.
Presentations
Panel Session: The future outlook for medical magnetic resonance imaging superconducting magnets enabled by new materials
New superconducting materials are constantly emerging as the entire world is pushing hard to discover, integrate and scale up superconducting magnet systems for medical magnetic resonance imaging (MRI) machines. These new materials hold the promise of enabling helium-free MRI systems with potentially lower costs to manufacture and operate with increased reliability and resiliency.
The MRI research and development space is a unique field where the intersection of materials science and magnet technology are leveraged in tandem to produce a medical imaging solution that is simply unrivaled by other imaging technologies like X-rays, ultrasound and computerized tomography. Because the imaging quality and utility of MRI is the best amongst all other options, continual improvement in this field has the potential for very significant commercial disruption and economic gains in a rapidly increasing global market.
Moderator: Jeff Whalen
Panelists: Greg Boebinger, Director, MagLab
Ernesto Bosque, MagLab Scientist, Florida State University
Glenn Walter, Professor and Scientist, University of Florida, Advanced Magnetic Resonance Imaging and Spectroscopy (AMRIS)
Scott Marshall, Senior Superconducting Magnet Systems Engineer, National High Magnetic Field Laboratory